Exhibit 3.13: Description of the TIMSS 2019 Advanced International Benchmark (625) of Mathematics Achievement

Advanced International Benchmark

Summary

Students can apply and reason in a variety of problem situations, solve linear equations, and make generalizations. They can solve a variety of fraction, proportion, and percent problems and justify their conclusions. They can understand linear functions and algebraic expressions. Students can use their knowledge of geometric figures to solve a wide range of problems involving angles, area, and surface area. They can calculate means and medians, and understand how changing data points can impact the mean. Students can interpret a wide variety of data displays to draw and justify conclusions, and solve multistep problems. They can solve problems involving expected values.

Students can solve a variety of fraction, proportion, and percent problems and justify their conclusions. They can reason with different representations of numbers in abstract and multistep problems.

Students can construct and solve linear equations in one or two variables. They can identify properties of linear functions from tables, graphs, and equations, including slopes and y-intercepts. Students can express generalizations either algebraically or in words, such as expressing the $n^{\text {th }}$ term in number patterns. They can simplify algebraic expressions.

Students can use their knowledge of geometric figures to solve a wide range of problems. They can solve a variety of problems about area and surface area, and use the Pythagorean theorem to find the side length of a triangle. Students can use their knowledge of the relationships between geometric figures, parallel lines, and angles to solve problems on the coordinate plane.

Students can calculate means and medians, and understand how changing data points can impact the mean. Students can interpret a wide variety of data displays to draw and justify conclusions, and solve multi-step problems. They can solve problems involving expected values.

Exhibit 3.13.1: Advanced International Benchmark of Mathematics Achievement - Example Item 1

A Percent significantly higher than international average
∇ Percent significantly lower than international average

See Appendix B. 7 for population coverage notes 1, 2, and 3. See Appendix B. 10 for sampling guidelines and sampling participation notes \dagger, \ddagger, and \equiv.
) Standard errors appear in parentheses. Because of rounding some results may appear inconsistent.
A dash (-) indicates comparable data not available.
TIMSS \& PIRLS

| Country |
| :--- | :--- | :--- |
| Percent |
| Full Credit |

A Percent significantly higher than international average
∇ Percent significantly lower than international average
See Appendix B. 7 for population coverage notes 1,2, and 3. See Appendix B. 10 for sampling guidelines and sampling participation notes \dagger, \ddagger, and \equiv.
() Standard errors appear in parentheses. Because of rounding some results may appear inconsistent.

Exhibit 3.13.3: Advanced International Benchmark of Mathematics Achievement - Example Item 3

A Percent significantly higher than international average
∇ Percent significantly lower than international average
See Appendix B. 7 for population coverage notes 1,2 , and 3 . See Appendix B. 10 for sampling guidelines and sampling participation notes \dagger, \ddagger, and \equiv. () Standard errors appear in parentheses. Because of rounding some results may appear inconsistent.

Exhibit 3.13.4: Advanced International Benchmark of Mathematics Achievement - Example Item 4

- Percent significantly higher than international average
∇ Percent significantly lower than international average
See Appendix B. 7 for population coverage notes 1,2 , and 3 . See Appendix B. 10 for sampling guidelines and sampling participation notes \dagger, \ddagger, and \equiv. () Standard errors appear in parentheses. Because of rounding some results may appear inconsistent.

